Math Problem Statement

Simplify the expression \( \frac{35^6 \cdot 15^4 \cdot 21^5}{3^{14} \cdot 5^{10} \cdot 7^{16}} \).

Solution

The expression in the image is:

356154(215)314510716.\frac{35^6 \cdot 15^4 \cdot (21^5)}{3^{14} \cdot 5^{10} \cdot 7^{16}}.

To simplify, we will first use the properties of exponents to break this down:

  1. Apply the exponent rules where appropriate: aman=am+na^m \cdot a^n = a^{m+n} and aman=amn\frac{a^m}{a^n} = a^{m-n}.

Let's rewrite the expression:

356154215314510716.\frac{35^6 \cdot 15^4 \cdot 21^5}{3^{14} \cdot 5^{10} \cdot 7^{16}}.

Step 1: Prime Factorization of the Numbers

  • 35=5735 = 5 \cdot 7, so 356=567635^6 = 5^6 \cdot 7^6.
  • 15=3515 = 3 \cdot 5, so 154=345415^4 = 3^4 \cdot 5^4.
  • 21=3721 = 3 \cdot 7, so 215=357521^5 = 3^5 \cdot 7^5.

Step 2: Substitute these into the expression

(5676)(3454)(3575)314510716.\frac{(5^6 \cdot 7^6) \cdot (3^4 \cdot 5^4) \cdot (3^5 \cdot 7^5)}{3^{14} \cdot 5^{10} \cdot 7^{16}}.

Step 3: Combine like terms (using the exponent rules)

  • For 33: 34+5=393^{4+5} = 3^9.
  • For 55: 56+4=5105^{6+4} = 5^{10}.
  • For 77: 76+5=7117^{6+5} = 7^{11}.

Now the expression looks like this:

39510711314510716.\frac{3^9 \cdot 5^{10} \cdot 7^{11}}{3^{14} \cdot 5^{10} \cdot 7^{16}}.

Step 4: Simplify each term by subtracting exponents

  • For 33: 39314=35=135\frac{3^9}{3^{14}} = 3^{-5} = \frac{1}{3^5}.
  • For 55: 510510=1\frac{5^{10}}{5^{10}} = 1.
  • For 77: 711716=75=175\frac{7^{11}}{7^{16}} = 7^{-5} = \frac{1}{7^5}.

Thus, the simplified expression becomes:

13575.\frac{1}{3^5 \cdot 7^5}.

Final Step: Combine the terms

1(37)5=1215.\frac{1}{(3 \cdot 7)^5} = \frac{1}{21^5}.

So, the final simplified expression is:

1215.\boxed{\frac{1}{21^5}}.

Would you like more details on any of these steps? Here are a few related questions to deepen your understanding:

  1. How can prime factorization help in simplifying exponent problems?
  2. What are the properties of exponents and how do they apply in division?
  3. Can you explain why 39/314=353^9 / 3^{14} = 3^{-5}?
  4. How would the problem change if any base had a negative exponent?
  5. Why does 510/5105^{10} / 5^{10} equal 1, and is this true for all bases?

Tip: Always break down numbers into their prime factors when dealing with exponents to make simplifications easier.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Prime Factorization
Exponent Rules

Formulas

Exponent Rule: \( a^m \cdot a^n = a^{m+n} \)
Exponent Rule: \( \frac{a^m}{a^n} = a^{m-n} \)

Theorems

Properties of Exponents

Suitable Grade Level

Grades 10-12